9.1.3. Pre-processing¶
Preprocessors for preprocessing data before feature extraction.
- class junifer.preprocess.BasePreprocessor(on=None, required_data_types=None)¶
Abstract base class for all preprocessors.
For every interface that is required, one needs to provide a concrete implementation of this abstract class.
- Parameters:
- Raises:
ValueError
If required input data type(s) is(are) not found.
Initialize the class.
- abstract get_output_type(input_type)¶
Get output type.
- abstract get_valid_inputs()¶
Get valid data types for input.
- abstract preprocess(input, extra_input=None)¶
Preprocess.
- Parameters:
- input
dict
A single input from the Junifer Data object to preprocess.
- extra_input
dict
, optional The other fields in the Junifer Data object. Useful for accessing other data type that needs to be used in the computation. For example, the confound removers can make use of the confounds if available (default None).
- input
- Returns:
- validate_input(input)¶
Validate input.
- Parameters:
- Returns:
- Raises:
ValueError
If the input does not have the required data.
- class junifer.preprocess.Smoothing(using, on, smoothing_params=None)¶
Class for smoothing.
- Parameters:
- using{“nilearn”, “afni”, “fsl”}
Implementation to use for smoothing:
“nilearn” : Use
nilearn.image.smooth_img()
“afni” : Use AFNI’s
3dBlurToFWHM
“fsl” : Use FSL SUSAN’s
susan
- on{“T1w”, “T2w”, “BOLD”} or
list
of the options The data type to apply smoothing to.
- smoothing_params
dict
, optional Extra parameters for smoothing as a dictionary (default None). If
using="nilearn"
, then the valid keys are:fmhw
scalar,numpy.ndarray
, tuple or list of scalar, “fast” or NoneSmoothing strength, as a full-width at half maximum, in millimeters:
If nonzero scalar, width is identical in all 3 directions.
If
numpy.ndarray
, tuple, or list, it must have 3 elements, giving the FWHM along each axis. If any of the elements is 0 or None, smoothing is not performed along that axis.If
"fast"
, a fast smoothing will be performed with a filter[0.2, 1, 0.2]
in each direction and a normalisation to preserve the local average value.If None, no filtering is performed (useful when just removal of non-finite values is needed).
else if
using="afni"
, then the valid keys are:fwhm
int or floatSmooth until the value. AFNI estimates the smoothing and then applies smoothing to reach
fwhm
.
else if
using="fsl"
, then the valid keys are:brightness_threshold
floatThreshold to discriminate between noise and the underlying image. The value should be set greater than the noise level and less than the contrast of the underlying image.
fwhm
floatSpatial extent of smoothing.
Initialize the class.
- get_output_type(input_type)¶
Get output type.
- get_valid_inputs()¶
Get valid data types for input.
- preprocess(input, extra_input=None)¶
Preprocess.
- class junifer.preprocess.SpaceWarper(using, reference, on)¶
Class for warping data to other template spaces.
- Parameters:
- using{“fsl”, “ants”}
Implementation to use for warping:
“fsl” : Use FSL’s
applywarp
“ants” : Use ANTs’
antsApplyTransforms
- reference
str
The data type to use as reference for warping, can be either a data type like
"T1w"
or a template space like"MNI152NLin2009cAsym"
. Use"T1w"
for native space warping and named templates for template space warping.- on{“T1w”, “T2w”, “BOLD”, “VBM_GM”, “VBM_WM”, “VBM_CSF”, “fALFF”, “GCOR”, “LCOR”} or
list
of the options The data type to warp.
- Raises:
ValueError
If
using
is invalid or ifreference
is invalid.
Initialize the class.
- get_output_type(input_type)¶
Get output type.
- get_valid_inputs()¶
Get valid data types for input.
- preprocess(input, extra_input=None)¶
Preprocess.
- Parameters:
- Returns:
- Raises:
ValueError
If
extra_input
is None when transforming to native space i.e., using"T1w"
as reference.RuntimeError
If the data is in the correct space and does not require warping or if FSL is used for template space warping.
- class junifer.preprocess.fMRIPrepConfoundRemover(strategy=None, spike=None, detrend=True, standardize=True, low_pass=None, high_pass=None, t_r=None, masks=None)¶
Class for confound removal using fMRIPrep confounds format.
Read confound files and select columns according to a pre-defined strategy.
Confound removal is based on
nilearn.image.clean_img()
.- Parameters:
- strategy
dict
, optional The strategy to use for each component. If None, will use the full strategy for all components (default None). The keys of the dictionary should correspond to names of noise components to include:
motion
wm_csf
global_signal
The values of dictionary should correspond to types of confounds extracted from each signal:
basic
: only the confounding time seriespower2
: signal + quadratic termderivatives
: signal + derivativesfull
: signal + deriv. + quadratic terms + power2 deriv.
- spike
float
, optional If None, no spike regressor is added. If spike is a float, it will add a spike regressor for every point at which framewise displacement exceeds the specified float (default None).
- detrendbool, optional
If True, detrending will be applied on timeseries, before confound removal (default True).
- standardizebool, optional
If True, returned signals are set to unit variance (default True).
- low_pass
float
, optional Low cutoff frequencies, in Hertz. If None, no filtering is applied (default None).
- high_pass
float
, optional High cutoff frequencies, in Hertz. If None, no filtering is applied (default None).
- t_r
float
, optional Repetition time, in second (sampling period). If None, it will use t_r from nifti header (default None).
- masks
str
,dict
orlist
ofdict
orstr
, optional The specification of the masks to apply to regions before extracting signals. Check Using Masks for more details. If None, will not apply any mask (default None).
- strategy
Initialize the class.
- get_output_type(input_type)¶
Get output type.
- get_valid_inputs()¶
Get valid data types for input.
- preprocess(input, extra_input=None)¶
Preprocess.
- Parameters:
- Returns: