9.2.11. On-the-fly¶
Utilities for on-the-fly analyses.
- junifer.onthefly.read_transform(storage, transform, feature_name=None, feature_md5=None, transform_args=None, transform_kw_args=None)¶
Read stored feature and transform to specific statistical output.
- Parameters:
- storagestorage-like
The storage class, for example, SQLiteFeatureStorage.
- transform
str
The kind of transform formatted as
<package>_<function>
, for example,bctpy_degrees_und
.- feature_name
str
, optional Name of the feature to read (default None).
- feature_md5
str
, optional MD5 hash of the feature to read (default None).
- transform_args
tuple
, optional The positional arguments for the callable of
transform
(default None).- transform_kw_args
dict
, optional The keyword arguments for the callable of
transform
(default None).
- Returns:
pandas.DataFrame
The transformed feature as a dataframe.
Notes
This function has been only tested for:
bct.degrees_und
bct.strengths_und
bct.clustering_coef_wu
bct.eigenvector_centrality_und
Using other functions may fail and require tweaking.
Provide onthefly functions for BrainPrint post-analysis.
- junifer.onthefly.brainprint.normalize(storage, features, kind)¶
Read stored brainprint data and normalize either surfaces or volumes.
- Parameters:
- storagestorage-like
The storage class, for example,
HDF5FeatureStorage
.- features
dict
, optional The feature names or MD5 hashes to read as dict. The dict should have the keys:
"areas"
(ifkind="surface"
)"volumes"
(ifkind="volume"
)"eigenvalues"
and the corresponding value for each of the keys is again a dict with the keys:
"feature_name"
: str or None"feature_md5"
: str or None
Either one of
"feature_name"
or"feature_md5"
needs to be not None for each first-level key, but both keys are mandatory.- kind{“surface”, “volume”}
The kind of normalization.
- Returns:
pandas.DataFrame
The transformed feature as a
pandas.DataFrame
.
- Raises:
ValueError
If
kind
is invalid.
- junifer.onthefly.brainprint.reweight(storage, feature_name=None, feature_md5=None)¶
Read stored brainprint data and reweight eigenvalues.
- Parameters:
- storagestorage-like
The storage class, for example,
HDF5FeatureStorage
.- feature_name
str
, optional Name of the feature to read (default None).
- feature_md5
str
, optional MD5 hash of the feature to read (default None).
- Returns:
pandas.DataFrame
The transformed feature as a
pandas.DataFrame
.