8.1.3. Pre-processing#
Provide imports for preprocess sub-package.
- class junifer.preprocess.BasePreprocessor(on=None)#
Provide abstract base class for all preprocessors.
- Parameters:
- abstract get_output_type(input)#
Get output type.
- get_valid_inputs()#
Get valid data types for input.
- abstract preprocess(input, extra_input=None)#
Preprocess.
- Parameters:
- input
dict
A single input from the Junifer Data object to preprocess.
- extra_input
dict
, optional The other fields in the Junifer Data object. Useful for accessing other data kind that needs to be used in the computation. For example, the confound removers can make use of the confounds if available (default None).
- input
- Returns:
- validate_input(input)#
Validate input.
- Parameters:
- Raises:
ValueError
If the input does not have the required data.
- class junifer.preprocess.fMRIPrepConfoundRemover(strategy=None, spike=None, detrend=True, standardize=True, low_pass=None, high_pass=None, t_r=None, mask_img=None)#
Class for confound removal using fMRIPrep confounds format.
Read confound files and select columns according to a pre-defined strategy.
Confound removal is based on
nilearn.image.clean_img()
.- Parameters:
- strategy
dict
, optional The strategy to use for each component. If None, will use the full strategy for all components (default None). The keys of the dictionary should correspond to names of noise components to include:
motion
wm_csf
global_signal
The values of dictionary should correspond to types of confounds extracted from each signal:
basic
: only the confounding time seriespower2
: signal + quadratic termderivatives
: signal + derivativesfull
: signal + deriv. + quadratic terms + power2 deriv.
- spike
float
, optional If None, no spike regressor is added. If spike is a float, it will add a spike regressor for every point at which framewise displacement exceeds the specified float (default None).
- detrendbool, optional
If True, detrending will be applied on timeseries, before confound removal (default True).
- standardizebool, optional
If True, returned signals are set to unit variance (default True).
- low_pass
float
, optional Low cutoff frequencies, in Hertz. If None, no filtering is applied (default None).
- high_pass
float
, optional High cutoff frequencies, in Hertz. If None, no filtering is applied (default None).
- t_r
float
, optional Repetition time, in second (sampling period). If None, it will use t_r from nifti header (default None).
- mask_img: Niimg-like object, optional
If provided, signal is only cleaned from voxels inside the mask. If mask is provided, it should have same shape and affine as imgs. If not provided, a mask is computed using
nilearn.masking.compute_brain_mask()
(default None).
- strategy
Initialise the class.
- get_output_type(input)#
Get the kind of the pipeline step.
- get_valid_inputs()#
Get the valid inputs for the pipeline step.
- preprocess(input, extra_input=None)#
Preprocess.
- Parameters:
- Returns:
- validate_input(input)#
Validate the input to the pipeline step.
- Parameters:
- Raises:
ValueError
If the input does not have the required data.