Note
Go to the end to download the full example code.
8.6. HCP FC Extraction¶
Authors: Leonard Sasse License: BSD 3 clause
from junifer.api import run
datagrabber = {
"kind": "HCPOpenAccess",
"modality": "fMRI",
"preprocessed": "ICA+FIX",
"space": "volumetric",
}
custom_confound_strategy = {
"filter": "butterworth",
"detrend": True,
"high_pass": 0.01,
"low_pass": 0.08,
"standardize": True,
"confounds": ["csf", "wm", "gsr"],
"derivatives": True,
"squares": True,
"other": [],
}
markers = [
{
"name": "Power264_FCPearson",
"kind": "FunctionalConnectivity",
"parcellation": "Power264",
"method": "Pearson",
"confound_strategy": "Params36",
},
{
"name": "Schaefer400x17_FCPearson",
"kind": "FunctionalConnectivity",
"parcellation": "Schaefer400x17",
"method": "Pearson",
"confound_strategy": "Params24",
},
{
"name": "Power264_FCSpearman",
"kind": "FunctionalConnectivity",
"parcellation": "Power264",
"method": "Spearman",
"confound_strategy": "ICAAROMA",
},
{
"name": "Schaefer400x17_FCSpearman",
"kind": "FunctionalConnectivity",
"parcellation": "Schaefer400x17",
"method": "Spearman",
"confound_strategy": "path/to/predefined/confound_file.tsv",
},
{
"name": "Schaefer400x17_FCSpearman",
"kind": "FunctionalConnectivity",
"parcellation": "Schaefer400x17",
"method": "Spearman",
"confound_strategy": custom_confound_strategy,
},
]
storage = {
"kind": "SQLiteFeatureStorage",
"uri": "/data/project/juniferexample",
}
run(
workdir="/tmp",
datagrabber=datagrabber,
elements=[("100408", "REST1", "LR")],
markers=markers,
storage=storage,
)