9.4.1. Nilearn¶
Custom objects adapted from nilearn.
- class junifer.external.nilearn.JuniferConnectivityMeasure(cov_estimator=EmpiricalCovariance(store_precision=False), kind='correlation', vectorize=False, discard_diagonal=False, standardize=True)¶
Class for custom ConnectivityMeasure.
Differs from
nilearn.connectome.ConnectivityMeasure
in the following ways:default
cov_estimator
issklearn.covariance.EmpiricalCovariance
default
kind
is"correlation"
supports Spearman’s correlation via
kind="spearman correlation"
- Parameters:
- cov_estimatorestimator object, optional
The covariance estimator (default
EmpiricalCovariance(store_precision=False)
).- kind{“covariance”, “correlation”, “spearman correlation”, “partial correlation”, “tangent”, “precision”}, optional
The matrix kind. The default value uses Pearson’s correlation. If
"spearman correlation"
is used, the data will be ranked before estimating the covariance. For the use of"tangent"
see [1] (default “correlation”).- vectorizebool, optional
If True, connectivity matrices are reshaped into 1D arrays and only their flattened lower triangular parts are returned (default False).
- discard_diagonalbool, optional
If True, vectorized connectivity coefficients do not include the matrices diagonal elements. Used only when vectorize is set to True (default False).
- standardizebool, optional
If standardize is True, the data are centered and normed: their mean is put to 0 and their variance is put to 1 in the time dimension (default True).
Note
Added to control passing value to
standardize
ofsignal.clean
to call new behavior since passing"zscore"
or True (default) is deprecated. This parameter will be deprecated in version 0.13 and removed in version 0.15.
References
[1]Varoquaux, G., Baronnet, F., Kleinschmidt, A. et al. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In Tianzi Jiang, Nassir Navab, Josien P. W. Pluim, and Max A. Viergever, editors, Medical image computing and computer-assisted intervention - MICCAI 2010, Lecture notes in computer science, Pages 200-208. Berlin, Heidelberg, 2010. Springer. doi:10/cn2h9c.
- Attributes:
- cov_estimator_estimator object
A new covariance estimator with the same parameters as
cov_estimator
.- mean_
numpy.ndarray
The mean connectivity matrix across subjects. For
"tangent"
kind, it is the geometric mean of covariances (a group covariance matrix that captures information from both correlation and partial correlation matrices). For other values forkind
, it is the mean of the corresponding matrices.- whitening_
numpy.ndarray
The inverted square-rooted geometric mean of the covariance matrices.
- set_inverse_transform_request(*, connectivities='$UNCHANGED$', diagonal='$UNCHANGED$')¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- connectivities
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for
connectivities
parameter ininverse_transform
.- diagonal
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for
diagonal
parameter ininverse_transform
.
- connectivities
- Returns:
- selfobject
The updated object.
- set_transform_request(*, confounds='$UNCHANGED$')¶
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- class junifer.external.nilearn.JuniferNiftiSpheresMasker(seeds, radius=None, mask_img=None, agg_func=<function mean>, allow_overlap=False, dtype=None, **kwargs)¶
Class for custom NiftiSpheresMasker.
Differs from
nilearn.maskers.NiftiSpheresMasker
in the following ways:it allows to pass any callable as the
agg_func
parameter.empty spheres do not create an error. Instead,
agg_func
is applied to an empty array and the result is passed.
- Parameters:
- seeds
list
offloat
Seed definitions. List of coordinates of the seeds in the same space as the images (typically MNI or TAL).
- radius
float
, optional Indicates, in millimeters, the radius for the sphere around the seed. If None, signal is extracted on a single voxel (default None).
- mask_imgNiimg-like object, optional
Mask to apply to regions before extracting signals (default None).
- agg_func
callable()
, optional The function to aggregate signals using (default numpy.mean).
- allow_overlapbool, optional
If False, an error is raised if the maps overlap (default None).
- dtype
numpy.dtype
or “auto”, optional The dtype for the extraction. If “auto”, the data will be converted to int32 if dtype is discrete and float32 if it is continuous (default None).
- **kwargs
Keyword arguments are passed to the
nilearn.maskers.NiftiSpheresMasker
.
- seeds
- inverse_transform(region_signals)¶
Compute voxel signals from spheres signals.
- Parameters:
- region_signals1D/2D
numpy.ndarray
Signal for each region. If a 1D array is provided, then the shape should be (number of elements,), and a 3D img will be returned. If a 2D array is provided, then the shape should be (number of scans, number of elements), and a 4D img will be returned.
- region_signals1D/2D
- Returns:
- voxel_signals
nibabel.nifti1.Nifti1Image
Signal for each sphere. shape: (mask_img, number of scans).
- voxel_signals
- set_inverse_transform_request(*, region_signals='$UNCHANGED$')¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- set_transform_request(*, confounds='$UNCHANGED$', imgs='$UNCHANGED$', sample_mask='$UNCHANGED$')¶
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- confounds
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for
confounds
parameter intransform
.- imgs
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for
imgs
parameter intransform
.- sample_mask
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for
sample_mask
parameter intransform
.
- confounds
- Returns:
- selfobject
The updated object.
- transform_single_imgs(imgs, confounds=None, sample_mask=None)¶
Extract signals from a single 4D niimg.
- Parameters:
- imgs3D/4D Niimg-like object
Images to process. If a 3D niimg is provided, a singleton dimension will be added to the output to represent the single scan in the niimg.
- confounds
pandas.DataFrame
, optional This parameter is passed to
nilearn.signal.clean()
. Please see the related documentation for details. shape: (number of scans, number of confounds)- sample_mask
np.ndarray
,list
ortuple
, optional Masks the niimgs along time/fourth dimension to perform scrubbing (remove volumes with high motion) and/or non-steady-state volumes. This parameter is passed to
nilearn.signal.clean()
. shape: (number of scans - number of volumes removed, )
- Returns:
- region_signals2D
numpy.ndarray
Signal for each sphere. shape: (number of scans, number of spheres)
- region_signals2D
- Warns:
DeprecationWarning
If a 3D niimg input is provided, the current behavior (adding a singleton dimension to produce a 2D array) is deprecated. Starting in version 0.12, a 1D array will be returned for 3D inputs.