Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.
julearn.transformers.FilterColumns#
- class julearn.transformers.FilterColumns(keep=None, row_select_col_type=None, row_select_vals=None)#
- Filter columns of a DataFrame. - Parameters:
- keepColumnTypesLike, optional
- Which feature types (‘X_types’) to keep. If not specified, ‘keep’ defaults to ‘continuous’. 
- row_select_col_typestr or list of str or set of str or ColumnTypes
- The column types needed to select rows (default is None) Not really useful for this one, but here for compatibility. 
- row_select_valsstr, int, bool or list of str, int, bool
- The value(s) which should be selected in the row_select_col_type to select the rows used for training (default is None) Not really useful for this one, but here for compatibility. 
 
 - __init__(keep=None, row_select_col_type=None, row_select_vals=None)#
 - transform(X)#
- Transform the data. - Parameters:
- Xpd.DataFrame
- The data to filter the columns on. 
 
- Returns:
- DataLike
- The filtered data. 
 
 
 - get_feature_names_out(input_features=None)#
- Get names of features to be returned. - Parameters:
- input_featuresNone
- Parameter to ensure scikit-learn compatibility. It is not used by the method. 
 
- Returns:
- list
- Names of features to be kept in the output pd.DataFrame. 
 
 
 - filter_columns(X)#
- Get the apply_to columns of a pandas DataFrame. - Parameters:
- Xpd.DataFrame
- The DataFrame to filter. 
 
- Returns:
- pd.DataFrame
- The DataFrame with only the apply_to columns. 
 
 
 - fit(X, y=None, **fit_params)#
- Fit the model. - This method will fit the model using only the columns selected by apply_to. - Parameters:
- Xpd.DataFrame
- The data to fit the model on. 
- yDataLike, optional
- The target data (default is None). 
- **fit_paramsAny
- Additional parameters to pass to the model’s fit method. 
 
- Returns:
- JuTransformer
- The fitted model. 
 
 
 - fit_transform(X, y=None, **fit_params)#
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Input samples. 
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- Target values (None for unsupervised transformations). 
- **fit_paramsdict
- Additional fit parameters. 
 
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
- Transformed array. 
 
 
 - get_apply_to()#
- Get the column types the estimator applies to. - Returns:
- ColumnTypes
- The column types the estimator applies to. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_needed_types()#
- Get the column types needed by the estimator. - Returns:
- ColumnTypes
- The column types needed by the estimator. 
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_output(*, transform=None)#
- Set output container. - See Introducing the set_output API for an example on how to use the API. - Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
- Configure output of transform and fit_transform. - “default”: Default output format of a transformer 
- “pandas”: DataFrame output 
- “polars”: Polars output 
- None: Transform configuration is unchanged 
 - New in version 1.4: “polars” option was added. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance.