8.1.5. Storage#
Provide imports for storage sub-package.
- class junifer.storage.BaseFeatureStorage(uri, storage_types, single_output=True)#
Abstract base class for feature storage.
For every interface that is required, one needs to provide a concrete implementation of this abstract class.
- Parameters:
- abstract collect()#
Collect data.
- get_valid_inputs()#
Get valid storage types for input.
- abstract list_features()#
List the features in the storage.
- Returns:
dict
List of features in the storage. The keys are the feature names to be used in read_features() and the values are the metadata of each feature.
- abstract read_df(feature_name=None, feature_md5=None)#
Read feature into a pandas DataFrame.
- Parameters:
- Returns:
pandas.DataFrame
The features as a dataframe.
- store(kind, **kwargs)#
Store extracted features data.
- Parameters:
- kind{“matrix”, “timeseries”, “table”}
The storage kind.
- **kwargs
The keyword arguments.
- Raises:
ValueError
If
kind
is invalid.
- store_matrix(meta_md5, element, data, col_names=None, row_names=None, matrix_kind='full', diagonal=True)#
Store matrix.
- Parameters:
- meta_md5
str
The metadata MD5 hash.
- element
dict
The element as a dictionary.
- data
numpy.ndarray
The matrix data to store.
- col_names
list
ortuple
ofstr
, optional The column names (default None).
- row_names
str
, optional The column name to use in case number of rows greater than 1. If None and number of rows greater than 1, then the name will be “index” (default None).
- matrix_kind
str
, optional The kind of matrix:
triu
: store upper triangular onlytril
: store lower triangularfull
: full matrix
(default “full”).
- diagonalbool, optional
Whether to store the diagonal. If matrix_kind is “full”, setting this to False will raise an error (default True).
- meta_md5
- abstract store_metadata(meta_md5, element, meta)#
Store metadata.
- store_table(meta_md5, element, data, columns=None, rows_col_name=None)#
Store table.
- Parameters:
- meta_md5
str
The metadata MD5 hash.
- element
dict
The element as a dictionary.
- data
numpy.ndarray
orlist
The table data to store.
- columns
list
ortuple
ofstr
, optional The columns (default None).
- rows_col_name
str
, optional The column name to use in case number of rows greater than 1. If None and number of rows greater than 1, then the name will be “index” (default None).
- meta_md5
- store_timeseries(meta_md5, element, data, columns=None)#
Implement timeseries storing.
- validate(input_)#
Validate the input to the pipeline step.
- Parameters:
- Raises:
ValueError
If the
input_
is invalid.
- class junifer.storage.PandasBaseFeatureStorage(uri, single_output=True, **kwargs)#
Abstract base class for feature storage via pandas.
For every interface that is required, one needs to provide a concrete implementation of this abstract class.
- Parameters:
- uri
str
orpathlib.Path
The path to the storage.
- single_outputbool, optional
Whether to have single output (default True).
- **kwargs
Keyword arguments passed to superclass.
- uri
See also
BaseFeatureStorage
The base class for feature storage.
- static element_to_index(element, n_rows=1, rows_col_name=None)#
Convert the element metadata to index.
- Parameters:
- Returns:
pandas.MultiIndex
The index of the dataframe to store.
- Raises:
ValueError
If meta does not contain the key “element”.
- get_valid_inputs()#
Get valid storage types for input.
- store_df(meta_md5, element, df)#
Implement pandas DataFrame storing.
- Parameters:
- df
pandas.DataFrame
orpandas.Series
The pandas DataFrame or Series to store.
- meta
dict
The metadata as a dictionary.
- df
- Raises:
ValueError
If the dataframe index has items that are not in the index generated from the metadata.
- store_table(meta_md5, element, data, columns=None, rows_col_name=None)#
Implement table storing.
- Parameters:
- meta_md5
str
The metadata MD5 hash.
- element
dict
The element as a dictionary.
- data
numpy.ndarray
orList
The table data to store.
- columns
list
ortuple
ofstr
, optional The columns (default None).
- rows_col_name
str
, optional The column name to use in case number of rows greater than 1. If None and number of rows greater than 1, then the name will be “index” (default None).
- meta_md5
- class junifer.storage.SQLiteFeatureStorage(uri, single_output=True, upsert='update', **kwargs)#
Concrete implementation for feature storage via SQLite.
- Parameters:
- uri
str
orpathlib.Path
The path to the file to be used.
- single_outputbool, optional
If False, will create one file per element. The name of the file will be prefixed with the respective element. If True, will create only one file as specified in the uri and store all the elements in the same file. This behaviour is only suitable for non-parallel executions. SQLite does not support concurrency (default True).
- upsert{“ignore”, “update”}, optional
Upsert mode. If “ignore” is used, the existing elements are ignored. If “update”, the existing elements are updated (default “update”).
- **kwargs
dict
The keyword arguments passed to the superclass.
- uri
See also
PandasBaseFeatureStorage
The base class for Pandas-based feature storage.
- collect()#
Implement data collection.
- Raises:
NotImplementedError
If
single_output
is True.
- get_engine(element=None)#
Get engine.
- Parameters:
- meta
dict
, optional The metadata as dictionary (default None).
- meta
- Returns:
sqlalchemy.engine.Engine
The sqlalchemy engine.
- list_features()#
List the features in the storage.
- Returns:
dict
List of features in the storage. The keys are the feature names to be used in read_features() and the values are the metadata of each feature.
- read_df(feature_name=None, feature_md5=None)#
Implement feature reading into a pandas DataFrame.
Either one of
feature_name
orfeature_md5
needs to be specified.- Parameters:
- Returns:
pandas.DataFrame
The features as a dataframe.
- Raises:
ValueError
If parameter values are invalid or feature is not found or multiple features are found.
- store_df(meta_md5, element, df)#
Implement pandas DataFrame storing.
- Parameters:
- df
pandas.DataFrame
orpandas.Series
The pandas DataFrame or Series to store.
- meta
dict
The metadata as a dictionary.
- df
- Raises:
ValueError
If the dataframe index has items that are not in the index generated from the metadata.
- store_matrix(meta_md5, element, data, col_names=None, row_names=None, matrix_kind='full', diagonal=True)#
Implement matrix storing.
- Parameters:
- meta_md5
str
The metadata MD5 hash.
- element
dict
The element as a dictionary.
- data
numpy.ndarray
The matrix data to store.
- meta
dict
The metadata as a dictionary.
- col_names
list
ortuple
ofstr
, optional The column names (default None).
- row_names
str
, optional The column name to use in case number of rows greater than 1. If None and number of rows greater than 1, then the name will be “index” (default None).
- matrix_kind
str
, optional The kind of matrix:
triu
: store upper triangular onlytril
: store lower triangularfull
: full matrix
(default “full”).
- diagonalbool, optional
Whether to store the diagonal. If matrix_kind is “full”, setting this to False will raise an error (default True).
- meta_md5