Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.
julearn.transformers.JuColumnTransformer#
- class julearn.transformers.JuColumnTransformer(name, transformer, apply_to, needed_types=None, row_select_col_type=None, row_select_vals=None, **params)#
- Column transformer that can be used in a Junifer pipeline. - This column transformer is a wrapper around the sklearn column transformer, so it can be used directly with Junifer pipelines. - Parameters:
- namestr
- Name of the transformer. 
- transformerEstimatorLike
- The transformer to apply to the columns. 
- apply_toColumnTypesLike
- To which column types the transformer needs to be applied to. 
- needed_typesColumnTypesLike, optional
- Which feature types are needed for the transformer to work. 
- row_select_col_typestr or list of str or set of str or ColumnTypes
- The column types needed to select rows (default is None) 
- row_select_valsstr, int, bool or list of str, int, bool
- The value(s) which should be selected in the row_select_col_type to select the rows used for training (default is None) 
 
 - __init__(name, transformer, apply_to, needed_types=None, row_select_col_type=None, row_select_vals=None, **params)#
 - transform(X)#
- Apply the transformer. - Parameters:
- Xpd.DataFrame
- Data to be transformed. 
 
- Returns:
- outpd.DataFrame
- Transformed data. 
 
 
 - get_feature_names_out(input_features=None)#
- Get names of features to be returned. - Parameters:
- input_featuresarray-like of str or None, default=None
- If input_features is None, then feature_names_in_ is used as feature names in. If feature_names_in_ is not defined, then the following input feature names are generated: [“x0”, “x1”, …, “x(n_features_in_ - 1)”]. 
- If input_features is an array-like, then input_features must match feature_names_in_ if feature_names_in_ is defined. 
 
 
- Returns:
- list
- Names of features to be kept in the output pd.DataFrame. 
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- Not used. Kept for compatibility with scikit-learn. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_params(**kwargs)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - sklearn.pipeline.Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - filter_columns(X)#
- Get the apply_to columns of a pandas DataFrame. - Parameters:
- Xpd.DataFrame
- The DataFrame to filter. 
 
- Returns:
- pd.DataFrame
- The DataFrame with only the apply_to columns. 
 
 
 - fit(X, y=None, **fit_params)#
 - fit_transform(X, y=None, **fit_params)#
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Input samples. 
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- Target values (None for unsupervised transformations). 
- **fit_paramsdict
- Additional fit parameters. 
 
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
- Transformed array. 
 
 
 - get_apply_to()#
- Get the column types the estimator applies to. - Returns:
- ColumnTypes
- The column types the estimator applies to. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_needed_types()#
- Get the column types needed by the estimator. - Returns:
- ColumnTypes
- The column types needed by the estimator. 
 
 
 - set_output(*, transform=None)#
- Set output container. - See Introducing the set_output API for an example on how to use the API. - Parameters:
- transform{“default”, “pandas”}, default=None
- Configure output of transform and fit_transform. - “default”: Default output format of a transformer 
- “pandas”: DataFrame output 
- None: Transform configuration is unchanged 
 
 
- Returns:
- selfestimator instance
- Estimator instance.