Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.
julearn.transformers.target.JuTransformedTargetModel#
- class julearn.transformers.target.JuTransformedTargetModel(model, transformer)#
- Class that provides a model that supports transforming the target. - This _model_ is a wrapper that will transform the target before fitting. - Parameters:
- modelModelLike
- The model to be wrapped. Can be a pipeline. 
- transformerJuTargetPipeline
- The transformer to be used to transform the target. 
 
 - __init__(model, transformer)#
 - fit(X, y, **fit_params)#
- Fit the model. - Parameters:
- Xpd.DataFrame
- The input data. 
- yDataLike
- The target. 
- **fit_paramsdict
- Additional parameters to be passed to the model fit method. 
 
- Returns:
- JuTransformedTargetModel
- The fitted model. 
 
 
 - predict(X)#
- Predict using the model. - Parameters:
- Xpd.DataFrame
- The data to predict on. 
 
- Returns:
- DataLike
- The predictions. 
 
 
 - score(X, y)#
- Score the model. - Parameters:
- Xpd.DataFrame
- The input data. 
- yDataLike
- The target. 
 
- Returns:
- float
- Score for the model. 
 
 
 - predict_proba(X)#
- Compute probabilities of possible outcomes for samples in X. - Parameters:
- Xpd.DataFrame
- The data to predict on. 
 
- Returns:
- np.ndarray
- Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_. 
 
 
 - decision_function(X)#
- Evaluate the decision function for the samples in X. - Parameters:
- Xpd.DataFrame
- The data to obtain the decision function. 
 
- Returns:
- Xarray-like of shape (n_samples, n_class * (n_class-1) / 2)
- Returns the decision function of the sample for each class in the model. 
 
 
 - transform_target(X, y)#
- Transform target. - Parameters:
- Xpd.DataFrame
- The input data. 
- yDataLike
- The target. 
 
- Returns:
- DataLike
- The transformed target. 
 
 
 - can_inverse_transform()#
- Check if the target can be inverse transformed. - Returns:
- bool
- True if the target can be inverse transformed, False otherwise. 
 
 
 - filter_columns(X)#
- Get the apply_to columns of a pandas DataFrame. - Parameters:
- Xpd.DataFrame
- The DataFrame to filter. 
 
- Returns:
- pd.DataFrame
- The DataFrame with only the apply_to columns. 
 
 
 - get_apply_to()#
- Get the column types the estimator applies to. - Returns:
- ColumnTypes
- The column types the estimator applies to. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_needed_types()#
- Get the column types needed by the estimator. - Returns:
- ColumnTypes
- The column types needed by the estimator. 
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance.