Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.
julearn.transformers.DropColumns#
- class julearn.transformers.DropColumns(apply_to, row_select_col_type=None, row_select_vals=None)#
- Drop columns of a DataFrame. - Parameters:
- apply_toColumnTypesLike
- The feature types (‘X_types’) to drop. 
- row_select_col_typestr or list of str or set of str or ColumnTypes
- The column types needed to select rows (default is None) Not really useful for this one, but here for compatibility. 
- row_select_valsstr, int, bool or list of str, int, bool
- The value(s) which should be selected in the row_select_col_type to select the rows used for training (default is None) Not really useful for this one, but here for compatibility. 
 
 - __init__(apply_to, row_select_col_type=None, row_select_vals=None)#
 - transform(X)#
- Drop the columns. - Parameters:
- Xpd.DataFrame
- Data to drop columns. 
 
- Returns:
- pd.DataFrame
- Data with dropped columns. 
 
 
 - get_support(indices=False)#
- Get the support mask. - Parameters:
- indicesbool
- If true, return indices. 
 
- Returns:
- support_masknumpy.array
- The support mask 
 
 
 - filter_columns(X)#
- Get the apply_to columns of a pandas DataFrame. - Parameters:
- Xpd.DataFrame
- The DataFrame to filter. 
 
- Returns:
- pd.DataFrame
- The DataFrame with only the apply_to columns. 
 
 
 - fit(X, y=None, **fit_params)#
- Fit the model. - This method will fit the model using only the columns selected by apply_to. - Parameters:
- Xpd.DataFrame
- The data to fit the model on. 
- yDataLike, optional
- The target data (default is None). 
- **fit_paramsAny
- Additional parameters to pass to the model’s fit method. 
 
- Returns:
- JuTransformer
- The fitted model. 
 
 
 - fit_transform(X, y=None, **fit_params)#
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Input samples. 
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
- Target values (None for unsupervised transformations). 
- **fit_paramsdict
- Additional fit parameters. 
 
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
- Transformed array. 
 
 
 - get_apply_to()#
- Get the column types the estimator applies to. - Returns:
- ColumnTypes
- The column types the estimator applies to. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_needed_types()#
- Get the column types needed by the estimator. - Returns:
- ColumnTypes
- The column types needed by the estimator. 
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_output(*, transform=None)#
- Set output container. - See Introducing the set_output API for an example on how to use the API. - Parameters:
- transform{“default”, “pandas”}, default=None
- Configure output of transform and fit_transform. - “default”: Default output format of a transformer 
- “pandas”: DataFrame output 
- None: Transform configuration is unchanged 
 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance.