Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.
julearn.models.dynamic.DynamicSelection#
- class julearn.models.dynamic.DynamicSelection(ensemble, algorithm, ds_split=0.2, random_state=None, random_state_algorithm=None, **kwargs)#
Model to use dynamic selection algorithms from DESlib.
- Parameters:
- ensembleModelLike
sklearn compatible ensemble model. E.g RandomForest
- algorithmstr
algorithm from deslib to make the model dynamic. Options:
METADES
SingleBest
StaticSelection
StackedClassifier
KNORAU
KNORAE
DESP
OLA
MCB
KNOP
- ds_splitfloat, optional
How to split the training data. One split is used to train the ensemble model and the other to train the dynamic algorithm, by default .2 You can use any sklearn cv consistent cv splitter, but only with n_splits = 1.
- random_stateint, optional
random state to get reproducible train test splits in case you use a float for ds_split (default is None).
- random_state_algorithmint, optional
random state to get reproducible Deslib algorithm models (default is None).
- **kwargsAny
Any additional parameters to pass to the deslib algorithm.
- __init__(ensemble, algorithm, ds_split=0.2, random_state=None, random_state_algorithm=None, **kwargs)#
- fit(X, y)#
Fit the model.
- Parameters:
- XDataLike
The data to fit the model on.
- yDataLike
The target data.
- Returns:
- DynamicSelection
The fitted model.
- predict(X)#
Predict using the model.
- Parameters:
- XDataLike
The data to predict on.
- Returns:
- DataLike
The predictions.
- predict_proba(X)#
Compute probabilities of possible outcomes for samples in X.
- Parameters:
- XDataLike
The data to predict on.
- Returns:
- np.ndarray
Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.
- score(X, y, sample_weight=None)#
Score the model.
- Parameters:
- Xpd.DataFrame
The data to predict on.
- yDataLike
The true target values.
- sample_weightDataLike, optional
Sample weights to use when computing the score (default None).
- Returns:
- float
The score.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight='$UNCHANGED$')#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.