Note

This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the What you really need to know section for the big picture.

julearn.base.WrapModel#

class julearn.base.WrapModel(model, apply_to=None, needed_types=None, **params)#

Wrap a model to make it a julearn estimator.

Parameters:
modelModelLike

The model to wrap.

apply_tostr or list of str or set of str or ColumnTypes

The column types to apply the model to. If None, the model is applied to continuous type (default is None).

needed_typesstr or list of str or set of str or ColumnTypes

The column types needed by the model. If None, there are no needed types (default is None)

**params

The parameters to set on the model.

__init__(model, apply_to=None, needed_types=None, **params)#
fit(X, y=None, **fit_params)#

Fit the model.

This method will fit the model using only the columns selected by apply_to.

Parameters:
Xpd.DataFrame

The data to fit the model on.

yDataLike, optional

The target data (default is None).

**fit_paramsAny

Additional parameters to pass to the model’s fit method.

Returns:
WrapModel

The fitted model.

predict(X)#

Predict using the model.

Parameters:
Xpd.DataFrame

The data to predict on.

Returns:
DataLike

The predictions.

score(X, y)#

Score the model.

Parameters:
Xpd.DataFrame

The data to predict on.

yDataLike

The true target values.

Returns:
float

The score.

predict_proba(X)#

Compute probabilities of possible outcomes for samples in X.

Parameters:
Xpd.DataFrame

The data to predict on.

Returns:
np.ndarray

Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.

decision_function(X)#

Evaluate the decision function for the samples in X.

Parameters:
Xpd.DataFrame

The data to obtain the decision function.

Returns:
Xarray-like of shape (n_samples, n_class * (n_class-1) / 2)

Returns the decision function of the sample for each class in the model.

predict_log_proba(X)#

Compute probabilities of possible outcomes for samples in X.

Parameters:
Xpd.DataFrame

The data to predict on.

Returns:
np.ndarray

Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute classes_.

property classes_: ndarray#

Get the classes of the model.

get_params(deep=True)#

Get the parameters of the model.

Parameters:
deepbool, default=True

If True, will return the parameters for this model and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**kwargs)#

Set the parameters of this model.

The method works on simple models as well as on nested objects (such as sklearn.pipeline.Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**kwargsdict

Model parameters.

Returns:
WrapModel

WrapModel instance.

filter_columns(X)#

Get the apply_to columns of a pandas DataFrame.

Parameters:
Xpd.DataFrame

The DataFrame to filter.

Returns:
pd.DataFrame

The DataFrame with only the apply_to columns.

get_apply_to()#

Get the column types the estimator applies to.

Returns:
ColumnTypes

The column types the estimator applies to.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_needed_types()#

Get the column types needed by the estimator.

Returns:
ColumnTypes

The column types needed by the estimator.