Note
Go to the end to download the full example code
Custom Scoring Function for Regression
This example uses the ‘diabetes’ data from sklearn datasets and performs a regression analysis using a Ridge Regression model. As scorers, it uses scikit-learn, julearn and a custom metric defined by the user.
# Authors: Shammi More <s.more@fz-juelich.de>
# Federico Raimondo <f.raimondo@fz-juelich.de>
#
# License: AGPL
import pandas as pd
import scipy
from sklearn.datasets import load_diabetes
from sklearn.metrics import make_scorer
from julearn.scoring import register_scorer
from julearn import run_cross_validation
from julearn.utils import configure_logging
Set the logging level to info to see extra information
configure_logging(level='INFO')
2023-04-06 09:51:26,375 - julearn - INFO - ===== Lib Versions =====
2023-04-06 09:51:26,375 - julearn - INFO - numpy: 1.23.5
2023-04-06 09:51:26,375 - julearn - INFO - scipy: 1.10.1
2023-04-06 09:51:26,375 - julearn - INFO - sklearn: 1.0.2
2023-04-06 09:51:26,375 - julearn - INFO - pandas: 1.4.4
2023-04-06 09:51:26,375 - julearn - INFO - julearn: 0.3.1.dev2
2023-04-06 09:51:26,375 - julearn - INFO - ========================
load the diabetes data from sklearn as a pandas dataframe
features, target = load_diabetes(return_X_y=True, as_frame=True)
Dataset contains ten variables age, sex, body mass index, average blood pressure, and six blood serum measurements (s1-s6) diabetes patients and a quantitative measure of disease progression one year after baseline which is the target we are interested in predicting.
print('Features: \n', features.head()) # type: ignore
print('Target: \n', target.describe()) # type: ignore
Features:
age sex bmi ... s4 s5 s6
0 0.038076 0.050680 0.061696 ... -0.002592 0.019908 -0.017646
1 -0.001882 -0.044642 -0.051474 ... -0.039493 -0.068330 -0.092204
2 0.085299 0.050680 0.044451 ... -0.002592 0.002864 -0.025930
3 -0.089063 -0.044642 -0.011595 ... 0.034309 0.022692 -0.009362
4 0.005383 -0.044642 -0.036385 ... -0.002592 -0.031991 -0.046641
[5 rows x 10 columns]
Target:
count 442.000000
mean 152.133484
std 77.093005
min 25.000000
25% 87.000000
50% 140.500000
75% 211.500000
max 346.000000
Name: target, dtype: float64
Let’s combine features and target together in one dataframe and define X and y
Train a ridge regression model on train dataset and use mean absolute error for scoring
2023-04-06 09:51:26,402 - julearn - INFO - Using default CV
2023-04-06 09:51:26,402 - julearn - INFO - ==== Input Data ====
2023-04-06 09:51:26,402 - julearn - INFO - Using dataframe as input
2023-04-06 09:51:26,402 - julearn - INFO - Features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:26,403 - julearn - INFO - Target: target
2023-04-06 09:51:26,403 - julearn - INFO - Expanded X: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:26,403 - julearn - INFO - Expanded Confounds: []
2023-04-06 09:51:26,404 - julearn - INFO - ====================
2023-04-06 09:51:26,404 - julearn - INFO -
2023-04-06 09:51:26,404 - julearn - INFO - ====== Model ======
2023-04-06 09:51:26,404 - julearn - INFO - Obtaining model by name: ridge
2023-04-06 09:51:26,404 - julearn - INFO - ===================
2023-04-06 09:51:26,404 - julearn - INFO -
2023-04-06 09:51:26,405 - julearn - INFO - CV interpreted as RepeatedKFold with 5 repetitions of 5 folds
The scores dataframe has all the values for each CV split.
print(scores.head())
fit_time score_time test_score repeat fold
0 0.013237 0.010358 -44.386924 0 0
1 0.013348 0.008491 -45.094063 0 1
2 0.013541 0.008924 -43.188016 0 2
3 0.013484 0.008634 -41.591935 0 3
4 0.013350 0.008951 -49.226121 0 4
Mean value of mean absolute error across CV
print(scores['test_score'].mean() * -1) # type: ignore
44.56947555620943
Now do the same thing, but use mean absolute error and Pearson product-moment correlation coefficient (squared) as scoring functions
2023-04-06 09:51:27,020 - julearn - INFO - Using default CV
2023-04-06 09:51:27,020 - julearn - INFO - ==== Input Data ====
2023-04-06 09:51:27,020 - julearn - INFO - Using dataframe as input
2023-04-06 09:51:27,020 - julearn - INFO - Features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:27,020 - julearn - INFO - Target: target
2023-04-06 09:51:27,021 - julearn - INFO - Expanded X: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:27,021 - julearn - INFO - Expanded Confounds: []
2023-04-06 09:51:27,022 - julearn - INFO - ====================
2023-04-06 09:51:27,022 - julearn - INFO -
2023-04-06 09:51:27,022 - julearn - INFO - ====== Model ======
2023-04-06 09:51:27,022 - julearn - INFO - Obtaining model by name: ridge
2023-04-06 09:51:27,022 - julearn - INFO - ===================
2023-04-06 09:51:27,022 - julearn - INFO -
2023-04-06 09:51:27,022 - julearn - INFO - CV interpreted as RepeatedKFold with 5 repetitions of 5 folds
Now the scores dataframe has all the values for each CV split, but two scores unders the column names ‘test_neg_mean_absolute_error’ and ‘test_r2_corr’.
print(scores[['test_neg_mean_absolute_error', 'test_r2_corr']].mean())
test_neg_mean_absolute_error -44.257386
test_r2_corr 0.502022
dtype: float64
If we want to define a custom scoring metric, we need to define a function that takes the predicted and the actual values as input and returns a value. In this case, we want to compute Pearson correlation coefficient (r).
def pearson_scorer(y_true, y_pred):
return scipy.stats.pearsonr( # type: ignore
y_true.squeeze(), y_pred.squeeze())[0]
Before using it, we need to convert it to a sklearn scorer and register it with julearn.
register_scorer(scorer_name='pearsonr', scorer=make_scorer(pearson_scorer))
2023-04-06 09:51:27,830 - julearn - INFO - registering scorer named pearsonr
Now we can use it as another scoring metric.
2023-04-06 09:51:27,830 - julearn - INFO - Using default CV
2023-04-06 09:51:27,830 - julearn - INFO - ==== Input Data ====
2023-04-06 09:51:27,831 - julearn - INFO - Using dataframe as input
2023-04-06 09:51:27,831 - julearn - INFO - Features: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:27,831 - julearn - INFO - Target: target
2023-04-06 09:51:27,831 - julearn - INFO - Expanded X: ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
2023-04-06 09:51:27,831 - julearn - INFO - Expanded Confounds: []
2023-04-06 09:51:27,832 - julearn - INFO - ====================
2023-04-06 09:51:27,832 - julearn - INFO -
2023-04-06 09:51:27,832 - julearn - INFO - ====== Model ======
2023-04-06 09:51:27,832 - julearn - INFO - Obtaining model by name: ridge
2023-04-06 09:51:27,832 - julearn - INFO - ===================
2023-04-06 09:51:27,832 - julearn - INFO -
2023-04-06 09:51:27,833 - julearn - INFO - CV interpreted as RepeatedKFold with 5 repetitions of 5 folds
Total running time of the script: ( 0 minutes 2.506 seconds)