.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_faces_decomposition.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_faces_decomposition.py: Faces Decomposition =================== Implemented based on scikit-learn's decomposition example. Authors: Federico Raimondo, Vlad Niculae, Alexandre Gramfort License: BSD 3 clause .. GENERATED FROM PYTHON SOURCE LINES 12-107 .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/images/sphx_glr_plot_faces_decomposition_001.png :alt: First centered Olivetti faces :class: sphx-glr-multi-img * .. image:: /auto_examples/images/sphx_glr_plot_faces_decomposition_002.png :alt: Non-negative components - NMF - Train time 0.2s :class: sphx-glr-multi-img * .. image:: /auto_examples/images/sphx_glr_plot_faces_decomposition_003.png :alt: Orthogonal Projected Non-negative components - OPNMF - Train time 0.1s :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Dataset consists of 400 faces Extracting the top 6 Non-negative components - NMF... done in 0.219s Extracting the top 6 Orthogonal Projected Non-negative components - OPNMF... 2021-09-02 13:05:21,694 INFO Initializing using nndsvd 2021-09-02 13:05:21,754 INFO iter=0 diff=0.9636634588241577, obj=155.62796020507812 2021-09-02 13:05:21,801 INFO Converged in 80 iterations done in 0.113s | .. code-block:: default import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn import decomposition from opnmf import OPNMF # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) # ############################################################################# # Load faces data faces, _ = fetch_olivetti_faces(return_X_y=True, shuffle=True, random_state=rng) n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) def plot_gallery(title, images, n_col=n_col, n_row=n_row, cmap=plt.cm.gray): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=11) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) # ############################################################################# # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3), False), ('Orthogonal Projected Non-negative components - OPNMF', OPNMF(n_components=n_components, init='nndsvd', tol=5e-3), False), ] plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) # ############################################################################# # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ # Plot an image representing the pixelwise variance provided by the # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator, # via the PCA decomposition, also provides a scalar noise_variance_ # (the mean of pixelwise variance) that cannot be displayed as an image # so we skip it. if (hasattr(estimator, 'noise_variance_') and estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.014 seconds) .. _sphx_glr_download_auto_examples_plot_faces_decomposition.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_faces_decomposition.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_faces_decomposition.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_