.. include:: links.inc Available Pipeline Steps ======================== The following is a list of all the available steps that can be used to create a pipeline by name. Features Preprocessing ---------------------- Scalers ^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``zscore`` - Removing mean and scale to unit variance - `StandardScaler`_ * - ``scaler_robust`` - Removing median and scale to IQR - `RobustScaler`_ * - ``scaler_minmax`` - Scale to a given range - `MinMaxScaler`_ * - ``scaler_maxabs`` - Scale by max absolute value - `MaxAbsScaler`_ * - ``scaler_normalizer`` - Normalize to unit norm - `Normalizer`_ * - ``scaler_quantile`` - Transform to uniform or normal distribution (robust) - `QuantileTransformer`_ * - ``scaler_power`` - *Gaussianise* data - `PowerTransformer`_ Feature Selection ^^^^^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``select_univariate`` - Removing mean and scale to unit variance - `GenericUnivariateSelect`_ * - ``select_percentile`` - Rank and select percentile - `SelectPercentile`_ * - ``select_k`` - Rank and select K - `SelectKBest`_ * - ``select_fdr`` - Select based on estimated FDR - `SelectFdr`_ * - ``select_fpr`` - Select based on FPR threshold - `SelectFpr`_ * - ``select_fwe`` - Select based on FWE threshold - `SelectFwe`_ * - ``select_variance`` - Remove low variance features - `VarianceThreshold`_ Confound Removal ^^^^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``remove_confound`` - removing confounds from features, by subtracting the prediction of each feature given all confounds. By default this is equal to "independently regressing out the confounds from the features" - :class:`.confounds.DataFrameConfoundRemover` Decomposition ^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``pca`` - Principal Component Analysis - `PCA`_ Target Preprocessing -------------------- Target Scalers ^^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``zscore`` - Removing mean and scale to unit variance - `StandardScaler`_ Target Confound Removal ^^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 :header-rows: 1 * - Name (str) - Description - Class * - ``remove_confound`` - removing confounds from target, by subtracting the prediction of the target given all confounds. By default this is equal to "regressing out the confounds from the target" - :class:`.TargetConfoundRemover` Models ------ Support Vector Machines ^^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :widths: 30 80 40 20 20 20 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``svm`` - Support Vector Machine - `SVC`_ and `SVR`_ - Y - Y - Y Ensemble ^^^^^^^^ .. list-table:: :widths: 30 30 70 20 20 20 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``rf`` - Random Forest - `RandomForestClassifier`_ and `RandomForestRegressor`_ - Y - Y - Y * - ``et`` - Extra-Trees - `ExtraTreesClassifier`_ and `ExtraTreesRegressor`_ - Y - Y - Y * - ``adaboost`` - AdaBoost - `AdaBoostClassifier`_ and `AdaBoostRegressor`_ - Y - Y - Y * - ``bagging`` - Bagging - `BaggingClassifier`_ and `BaggingRegressor`_ - Y - Y - Y * - ``gradientboost`` - Gradient Boosting - `GradientBoostingClassifier`_ and `GradientBoostingRegressor`_ - Y - Y - Y Gaussian Processes ^^^^^^^^^^^^^^^^^^ .. list-table:: :widths: 30 30 70 20 20 20 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``gauss`` - Gaussian Process - `GaussianProcessClassifier`_ and `GaussianProcessRegressor`_ - Y - Y - Y Linear Models ^^^^^^^^^^^^^ .. list-table:: :widths: 30 50 70 10 10 10 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``logit`` - Logistic Regression (aka logit, MaxEnt). - `LogisticRegression`_ - Y - Y - N * - ``logitcv`` - Logistic Regression CV (aka logit, MaxEnt). - `LogisticRegressionCV`_ - Y - Y - N * - ``linreg`` - Least Squares regression. - `LinearRegression`_ - N - N - Y * - ``ridge`` - Linear least squares with l2 regularization. - `RidgeClassifier`_ and `Ridge`_ - Y - Y - Y * - ``ridgecv`` - Ridge regression with built-in cross-validation. - `RidgeClassifierCV`_ and `RidgeCV`_ - Y - Y - Y * - ``sgd`` - Linear model fitted by minimizing a regularized empirical loss with SGD - `SGDClassifier`_ and `SGDRegressor`_ - Y - Y - Y Naive Bayes ^^^^^^^^^^^ .. list-table:: :widths: 30 50 70 10 10 10 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``nb_bernoulli`` - Multivariate Bernoulli models. - `BernoulliNB`_ - Y - Y - N * - ``nb_categorical`` - Categorical features. - `CategoricalNB`_ - Y - Y - N * - ``nb_complement`` - Complement Naive Bayes - `ComplementNB`_ - Y - Y - N * - ``nb_gaussian`` - Gaussian Naive Bayes - `GaussianNB`_ - Y - Y - N * - ``nb_multinomial`` - Multinomial models - `MultinomialNB`_ - Y - Y - N Dummy ^^^^^ .. list-table:: :widths: 30 50 70 10 10 10 :header-rows: 1 * - Name (str) - Description - Class - Binary - Multiclass - Regression * - ``dummy`` - Use simple rules (without features). - `DummyClassifier`_ and `DummyRegressor`_ - Y - Y - Y