Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode Skip to content
julearn documentation
Logo
julearn documentation
  • 1. Getting started
  • 2. Setup suggestion
  • 3. Installing
  • 4. Optional Dependencies
  • 5. What you really need to know
    • 5.1. Why cross validation?
    • 5.2. Data
    • 5.3. Model Building
    • 5.4. Model Evaluation
    • 5.5. Model Comparison
  • 6. Selected deeper topics
    • 6.1. Applying preprocessing to the target
    • 6.2. Cross-validation consistent Confound Removal
    • 6.3. Hyperparameter Tuning
    • 6.4. Inspecting Models
    • 6.5. Cross-validation splitters
    • 6.6. Stacking Models
    • 6.7. Connectome-based Predictive Modeling (CBPM)
    • 6.8. Parallelizing julearn with Joblib
  • 7. Overview of available Pipeline Steps
  • 8. Examples
    • 8.1. Starting with julearn
      • Working with pandas
      • Simple Binary Classification
      • Grouped CV
      • Multiclass Classification
      • Stratified K-fold CV for regression analysis
      • Regression Analysis
    • 8.2. Model Comparison
      • Simple Model Comparison
    • 8.3. Inspection
      • Inspecting the fold-wise predictions
      • Inspecting Random Forest models
      • Inspecting SVM models
      • Preprocessing with variance threshold, zscore and PCA
    • 8.4. Complex Models
      • Target Generation
      • Transforming target variable with z-score
      • Tuning Multiple Hyperparameters Grids
      • Tuning Hyperparameters using Bayesian Search
      • Stacking Classification
      • Tuning Hyperparameters
      • Regression Analysis
    • 8.5. Confounds
      • Return Confounds in Confound Removal
      • Confound Removal (model comparison)
    • 8.6. Customization
      • Custom Scoring Function for Regression
  • 9. API Reference
    • 9.1. Main API
      • julearn.run_cross_validation
      • julearn.run_fit
    • 9.2. Pipeline
      • julearn.PipelineCreator
      • julearn.TargetPipelineCreator
      • julearn.pipeline.JuTargetPipeline
      • julearn.pipeline.pipeline_creator.Step
    • 9.3. Model Selection
      • julearn.model_selection.ContinuousStratifiedKFold
      • julearn.model_selection.RepeatedContinuousStratifiedKFold
      • julearn.model_selection.ContinuousStratifiedGroupKFold
      • julearn.model_selection.RepeatedContinuousStratifiedGroupKFold
      • julearn.model_selection.StratifiedBootstrap
      • julearn.model_selection.get_searcher
      • julearn.model_selection.list_searchers
      • julearn.model_selection.register_searcher
      • julearn.model_selection.reset_searcher_register
    • 9.4. Base
      • julearn.base.JuBaseEstimator
      • julearn.base.JuTransformer
      • julearn.base.WrapModel
      • julearn.base.ColumnTypes
      • julearn.base.ColumnTypesLike
      • julearn.base.change_column_type
      • julearn.base.get_column_type
      • julearn.base.make_type_selector
      • julearn.base.ensure_column_types
    • 9.5. Inspect
      • julearn.inspect.Inspector
      • julearn.inspect.FoldsInspector
      • julearn.inspect.PipelineInspector
      • julearn.inspect.preprocess
    • 9.6. Models
      • julearn.models.list_models
      • julearn.models.get_model
      • julearn.models.register_model
      • julearn.models.reset_model_register
    • 9.7. Dynamic Selection (DESLib)
      • julearn.models.dynamic.DynamicSelection
    • 9.8. Scoring
      • julearn.scoring.get_scorer
      • julearn.scoring.list_scorers
      • julearn.scoring.register_scorer
      • julearn.scoring.reset_scorer_register
      • julearn.scoring.check_scoring
    • 9.9. Scoring Metrics
      • julearn.scoring.metrics.r_corr
      • julearn.scoring.metrics.r2_corr
    • 9.10. Transformers
      • julearn.transformers.DropColumns
      • julearn.transformers.ChangeColumnTypes
      • julearn.transformers.SetColumnTypes
      • julearn.transformers.FilterColumns
      • julearn.transformers.CBPM
      • julearn.transformers.JuColumnTransformer
      • julearn.transformers.confound_remover.ConfoundRemover
      • julearn.transformers.list_transformers
      • julearn.transformers.get_transformer
      • julearn.transformers.register_transformer
      • julearn.transformers.reset_transformer_register
    • 9.11. Target Transformers
      • julearn.transformers.target.JuTransformedTargetModel
      • julearn.transformers.target.JuTargetTransformer
      • julearn.transformers.target.TargetConfoundRemover
      • julearn.transformers.target.TransformedTargetWarning
      • julearn.transformers.target.get_target_transformer
      • julearn.transformers.target.list_target_transformers
      • julearn.transformers.target.register_target_transformer
      • julearn.transformers.target.reset_target_transformer_register
    • 9.12. Utils
      • julearn.utils.logger
      • julearn.utils.configure_logging
      • julearn.utils.raise_error
      • julearn.utils.warn_with_log
    • 9.13. Typing
      • julearn.utils.typing.JuEstimatorLike
      • julearn.utils.typing.EstimatorLike
      • julearn.utils.typing.EstimatorLikeFit1
      • julearn.utils.typing.EstimatorLikeFit2
      • julearn.utils.typing.EstimatorLikeFity
    • 9.14. Prepare
      • julearn.prepare.prepare_input_data
      • julearn.prepare.check_consistency
    • 9.15. Stats
      • julearn.stats.corrected_ttest
    • 9.16. Visualization
      • julearn.viz.plot_scores
    • 9.17. Config
      • julearn.config.set_config
      • julearn.config.get_config
  • 10. Configuring julearn
  • 11. Contributing
  • 12. Maintaining
  • 13. FAQs
  • 14. What’s new
Back to top
View this page

8.3. Inspection¶

Examples that demonstrate how to inspect the models.

Inspecting the fold-wise predictions

Inspecting the fold-wise predictions

Inspecting Random Forest models

Inspecting Random Forest models

Inspecting SVM models

Inspecting SVM models

Preprocessing with variance threshold, zscore and PCA

Preprocessing with variance threshold, zscore and PCA

Gallery generated by Sphinx-Gallery

Next
Inspecting the fold-wise predictions
Previous
Simple Model Comparison
Copyright © 2026, julearn Contributors
Made with Sphinx and @pradyunsg's Furo